If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+25x-42=0
a = -3; b = 25; c = -42;
Δ = b2-4ac
Δ = 252-4·(-3)·(-42)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-11}{2*-3}=\frac{-36}{-6} =+6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+11}{2*-3}=\frac{-14}{-6} =2+1/3 $
| 24.9+n=14.25+13.9 | | 2÷5x=6 | | 7+10a+3a2=0 | | x^2=19/7 | | -10+1+7x=35 | | 5k-7÷4=5 | | 13x+6=22 | | 5k-7/4=5 | | x+61=213 | | 4(t-5)/2(t+6)=1/2 | | m+16=213 | | 6y+18=15y | | x*2x=10 | | 4/7m=2/7(2m+1 | | 4x-6/7x+5=3/2 | | 10=2u-8 | | 4x+3x+35=90 | | 3x/5=21/25 | | 2p÷3-P÷5=35 | | 5x(2)=20 | | -3x/4=-21 | | -5/7u=20 | | 2x-9=99 | | (2x+1)(x+2)=77 | | (6+z)(3z+7)=0 | | (y+50)=(10y+20) | | S+3s+4s=0 | | 2x^2+2x-91=0 | | A(n)=8+(3)+(n-1) | | C=30.00-0.10x | | A(n)=3+(n-1)+(5) | | 8x+3=27+3x |